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Drawbacks of Existing Approaches
Require Source Code: Incompatible with dominant  
software deployment and update mechanisms.
Poor Performance: Previous binary-based techniques 
have high overhead.
Compatibility: Existing techniques are incompatible  
with error handling and reporting features.

Our Approach
Length-limiting Randomization: Limit the utility 
of any disclosed address.
Limit Disclosures in EH-metadata: Intra-block 
randomization, reduce EH-metadata stored in memory.
New Entropy Metrics: To quantify security against 
the new threat model EH-metadata leakage.
Binary Analysis and Instrumentation: Compatible  
with x86-64 binaries with error handling and reporting.

Key Benefits
Compatibility with COTS binaries, including low- 
level libraries with hand-written assembly.
Compatibility with exceptions and stack traces.
Strong Security against EH-metadata leakage.
Low Runtime Overhead (less than 5%)
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Bounded utility of disclosed address: Break every 
function into partitions of k instructions on average.
Tunable entropy and performance: Tune k for 
trade-offs between security and performance.
Higher entropy for the same number of partitions:  
Additional randomness in the placement of breaks.
Can be combined with other randomizations:  
LLR introduces enough breaks for same partition size.
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Limiting Disclosures in EH-metadata

Available in 95% of Linux system binaries
12 blocks per function on average

pop r8

jge 12ff
sub $20, %rsp

add %rdi, %rax
push %rdi
call *%rax

push %rbp
call 52ab

push %rcx
sub %rcx, %rdx
mov %rdx, %rbx

pop r12

Reducing EH-metadata

Exception throw is done via a call instruction  
Store EH-metadata only for call-containing blocks
Expand call-containing blocks to adjacent blocks
Restore full EH-metadata to support stack tracing

call *%rax

call 52ab

call *%rax

call 52ab

Same time, space overhead
Leaks not reveal randomization
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