
Practical Fine-Grained Binary Code Randomization
Soumyakant Priyadarshan, Huan Nguyen, R. Sekar
SecLab

Drawbacks of Existing Approaches
Require Source Code: Incompatible with dominant  
software deployment and update mechanisms.
Poor Performance: Previous binary-based techniques 
have high overhead.
Compatibility: Existing techniques are incompatible  
with error handling and reporting features.

Our Approach
Length-limiting Randomization: Limit the utility 
of any disclosed address.
Limit Disclosures in EH-metadata: Intra-block 
randomization, reduce EH-metadata stored in memory.
New Entropy Metrics: To quantify security against 
the new threat model EH-metadata leakage.
Binary Analysis and Instrumentation: Compatible  
with x86-64 binaries with error handling and reporting.

Key Benefits
Compatibility with COTS binaries, including low- 
level libraries with hand-written assembly.
Compatibility with exceptions and stack traces.
Strong Security against EH-metadata leakage.
Low Runtime Overhead (less than 5%)

Indirect-disclosure
attack

Direct-disclosure
attackStatic attack

Attacker has a copy
of the victim's binary

Attacker discloses
victim's code memory

Attacker discloses
victim's data memory

identify functions using EH-metadata
linear

disassembly
identify and

remap pointers
control flow graph

Binary Analysis and Instrumentation

PC-relative address
Static pointer

Jump table target
EH-metadata

reassembly

Bounded utility of disclosed address: Break every 
function into partitions of k instructions on average.
Tunable entropy and performance: Tune k for 
trade-offs between security and performance.
Higher entropy for the same number of partitions:  
Additional randomness in the placement of breaks.
Can be combined with other randomizations:  
LLR introduces enough breaks for same partition size.

larger k
faster, leak more

SPECspeed 2017

Length-limiting Randomization

smaller k
slower, leak less

Limiting Disclosures in EH-metadata

Available in 95% of Linux system binaries
12 blocks per function on average

pop r8

jge 12ff
sub $20, %rsp

add %rdi, %rax
push %rdi
call *%rax

push %rbp
call 52ab

push %rcx
sub %rcx, %rdx
mov %rdx, %rbx

pop r12

Reducing EH-metadata

Exception throw is done via a call instruction  
Store EH-metadata only for call-containing blocks
Expand call-containing blocks to adjacent blocks
Restore full EH-metadata to support stack tracing

call *%rax

call 52ab

call *%rax

call 52ab

Same time, space overhead
Leaks not reveal randomization

Original
EH-metadata

Non-readable memory

Readable memory

Support
exception handling

Replace to support
stack tracing

